光纤激光器的结构及工作原理
和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。
光纤激光器增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。
光纤激光器的工作原理
掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可以形成相干性很好的激光。激光发射是受激辐射远远超过自发辐射的物理过程,为了使这种过程持续发生,必须形成离子数反转.因此要求参与过程的能级应超过2个,同时还要有泵浦源提供能量。
光纤激光器实际上也可以称为波长转换器.通过它可以将泵浦波长光转换为所需的激射波长光。例如,掺铒光纤激光器将980nm的泵浦光进行泵浦,输出1550nm的激光。激光的输出可以是连续的,也可以是脉冲形式的。激光输出是连续的还是脉冲输出形式主要依赖于激光工作介质.如果是连续形式输出,激光上能级的自发发射寿命必须高于激光下能级以获得较高的粒子数反转。如果是脉冲形式输出.激光下能级的寿命就会超过上能级,此时就会以脉冲的形式输出光纤激光器有2种激射状态:三能级和四能级激射。
光纤激光器的分类
(1)按增益介质分类 :稀土离子掺杂光纤激光器(Nd3+、Er3+.yb3+、Tm3+等,基质可以是石英玻璃、氟化锆玻璃、单晶)。非线性效应光纤激光器(利用光纤中的SRS、SBS非线性效应产生波长可调谐的激光)。在光纤中掺人不同的稀土离子,并采用适当的泵浦技术,即可获得不同波段的激光输出。(2)按谐振腔结构分类:F—P腔、环形腔、环路反射器光纤谐振腔以及”8”字形腔、DBR光纤激光器、DFB光纤激光器(3)按光纤结构分类: 单和双包层光纤激光器、光子晶体光纤激光器、特种光纤激光器。(4)按输出激光类型分类: 连续光纤激光器.超短脉冲光纤激光器、大功率光纤激光器。(5)按输出波长分类:S一波段(1460~1530 nm)、C一波段(1530~1565 nm)、L一波段(1565 1610 nm)。
光纤激光器的特点
在激光振荡中.将能量集中于谐振腔所选的驻波以产生相干光。在光技术中,只有光纤和波导能对光轴方向和横模方向进行三维模控制。在以单模光纤作增益介质的光纤激光器中无竞争横模,因此可进行稳定的激光振荡。在由激光引起的热损伤、受激喇曼散射和受激布里渊散射发生之前,如果没有模的竞争,那么只要注入泵浦光,就能增大激光输出功率。激光的增益和损耗比限制存储于激光介质中的能量转换效率。因光纤本身的损耗低,与其他激光器相比,具有超长(5—10 m以上)特征的光纤激光器的增益和损耗比大100倍一1000倍。因此,即使进行模控制,也可将存储能量几乎无损耗地转换成激光(光能)。
实际上,光纤激光器的输出功率与泵浦光成正比地线性增大,其转换效率达到85%。在950 nm波段激励,在1080 nm波段振荡的镱量子效率为88%。由此可知,激光功率几乎无损耗。例如,芯径为40 m,长度为10 m,输出功率为1.36 kW 的单模光纤激光器,其实际激光介质的体积只不过为9 mm。这表明,尺寸为2 mmx2 mm~2.5 mm的微芯片激光器能产生1.36 kW的输出功率。
千瓦级光纤激光器的体积与微芯片激光器相同
光纤激光器具有无竞争模、冷却效率和激光效率较高的优异特性。就具有超长增益泵浦和低损耗特性的光纤激光器而言,如果予以泵浦功率,则仅端面反射很容易实现激光振荡,因此技术开发的关键在于如何注入泵浦光。
光纤激光器的供应商美国IPG和SPI公司现已开发出一种将单条LD进行光纤耦合,然后注入双包层中第l包层的方式。这是一种以长寿命、高亮度光纤耦合型LD作为基本部件的最佳方式。另外,科研人员还提出了光纤盘形方式,这种方式适用于光纤传输光的LD泵浦固体激光元件,该泵浦方式同样可以满足放大千瓦以上输出功率的要求。光纤激光器使用光纤布喇格衍射光栅(FBG)。对石英光纤照射紫外光,写入调制折射率便形成一维FBG。与普通的衍射光栅相比,这种折射率略差的光栅写入长度>l cm,几乎无损耗,可成为选择多波长的反射镜。因此,即使组成多级叠加FBG激光谐振腔,也能保持高效率的能量转换。
喇曼光纤激光器,通过三级FBG谐振腔在多波长移位的情况下,也能获得近50%的转换效率。若将光纤连接到环上,使双向传输的光发生干涉以形成动态衍射光栅。科研人员以用于重力波检测的激光为基础,成功研制出单频光纤激光器。Yb光纤激光器具有准三能级的能量结构,所以未被激发时,略有基态吸收。左侧长为16 m的环形反射镜等于因光干涉而形成3 000万个吸收型衍射光栅,可进行单纵模振荡,其谱线宽度仅为2 kHz。在单频T作时,输出稳定性极好,3 h平均稳定性仅为0.8%。除以纯模振荡的光纤激光器达不到这种稳定性外,已商品化的光纤激光器的稳定性为2%。利用光纤熔接技术,可通过光纤光学系统将激光全部耦合,这也是其优点之一。未来在宇宙空间进行重力波检测时,这种全光纤窄带主振动功率放大(MOPA)系统有望发挥更大作用。
光纤激光全光纤窄带MOPA系统
光纤激光器具有光束质量好和输出功率稳定性高的特点,因此10—100 W级的小型单模光纤激光器在工业领域的应用价值较高。从理论上解释,单模光纤发出的激光应是点光源,如果充分利用光学系统.则可用理论极限的光斑直径进行微细加工。利用这种高质量光束很容易实现掩模、微细焊接和微细加工等.并可在形状记忆合金上加工复杂网格制成冠脉支架等。无排斥性的激光器最适于对厚度为0.2 mm的形状记忆合金细管进行微米级加工。与其他激光器相比,光纤激光器具有外形紧凑体积小、高输出功率稳定、不需水冷、综合激光效率高达20%一25%,且可用墙壁电等特点。可以认为.光纤激光器是一种激光输出极其方便的激光器。
光纤激光器的发展前景
光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率、低阈值、光束质量好和窄线宽等优点。光纤激光器通过掺杂不同的稀土离子可实现380—3 900 nm波段范同的激光输出,通过光纤光栅谐振腔的调节可实现波长选择且可调谐。与传统的固体激光器相比,光纤激光器体积小,寿命长,易于系统集成,在高温高压,高震动,高冲击的恶劣环境中皆可正常运转,其输出光谱具有更高的可调谐性和选择性医疗及生物市场的强劲需求驱动了飞秒(超快)激光技术在分析仪器应用方面的快速发展。人们正在努力对活体细胞、组织以及病毒转移特质进行实时测量和分析.
这些应用对人类攻克癌症等方面的研究至关重要。超快激光使得在对患者进行快速,非介入性诊断时可以取得实时信息。现有超快激光的制造技术成本太高,系统的尺寸也非常庞大,这些制约了市场的发展。光纤激光器的很大一部分应用可以走到超快激光.而且光纤激光器的生产厂商也着重从尺寸小巧方面推荐光纤的应用。生命和健康科学是一个非常强劲的市场.因为那里会永远不断地出现新的应用,其中很多是基于激光的应用,并且医药也在不断寻求改进。激光不再只局限为一种外科手术工具,将会更加广泛地应用于医学诊断(如细胞影像)、药检、DNA排序、细胞分类以及蛋白质分析等方面。激光现已广泛应用于人们前所未闻的领域中。
光纤激光器的发展趋势将体现在以下几个方面:(1)提高光纤激光器的本身性能:如何提高输出功率和转换效率,优化光束质量,缩短增益光纤长度,提高系统稳定性并使其更加小巧紧凑,上述目标将是未来光纤激光器领域研究的重点;(2)新型光纤激光器的研制:在时域方面,具有更小占空比的超短脉冲锁模光纤激光器一直是激光领域的研究热点。高功率飞秒量级脉冲光纤激光器一直是人们长期追求的目标,该领域研究的突破不仅可以给光通信时分复用(OTDM)提供理想的光源,而且可以有效带动激光加工、激光打标及激光加密等相关产业的发展;在频域方面,宽带输出并可调谐的光纤激光器将成为研究热点。近年来,一种采用ZEBLAN材料(zr,Ba,La,Al,Nd)为激光介质的非线性光纤激光器引起了人们的重视。这种激光器具有相当宽的带宽和低损耗.可实现波长上转换几个波段。可以预见,随着相关技术的完善,光纤激光器将向更广阔的领域发展,并有可能成为替代固体激光器和半导体激光器的新一代光源,形成一个新兴的产业。
综上所述,光纤激光器技术是一个正在得到高度重视和迅速发展的新型技术研究热点,所涉及的科学研究和产品应用领域十分广泛,具有巨大的潜在应用价值和广阔的市场前景。随着各种类型光纤激光器技术的逐步成熟和商业化应用,将对相关领域的发展产生巨大的推动作用,同时也将引起相关技术领域的深刻变革。